首页> 外文OA文献 >Fuzzy Knowledge Representation, Learning and Optimization with Bayesian Analysis in Fuzzy Semantic Networks
【2h】

Fuzzy Knowledge Representation, Learning and Optimization with Bayesian Analysis in Fuzzy Semantic Networks

机译:贝叶斯模糊知识表示,学习与优化   模糊语义网络分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a method of optimization, based on both Bayesian Analysistechnical and Gallois Lattice, of a Fuzzy Semantic Networks. The technicalSystem we use learn by interpreting an unknown word using the links createdbetween this new word and known words. The main link is provided by the contextof the query. When novice's query is confused with an unknown verb (goal)applied to a known noun denoting either an object in the ideal user's Networkor an object in the user's Network, the system infer that this new verbcorresponds to one of the known goal. With the learning of new words in naturallanguage as the interpretation, which was produced in agreement with the user,the system improves its representation scheme at each experiment with a newuser and, in addition, takes advantage of previous discussions with users. Thesemantic Net of user objects thus obtained by these kinds of learning is notalways optimal because some relationships between couple of user objects can begeneralized and others suppressed according to values of forces thatcharacterize them. Indeed, to simplify the obtained Net, we propose to proceedto an inductive Bayesian analysis, on the Net obtained from Gallois lattice.The objective of this analysis can be seen as an operation of filtering of theobtained descriptive graph.
机译:本文提出了一种基于贝叶斯分析技术和Gallois格网的模糊语义网络优化方法。我们使用的技术系统是通过在新单词和已知单词之间创建的链接来解释未知单词来学习的。主链接由查询的上下文提供。当新手的查询与应用于已知名词的未知动词(目标)混淆时,该名词表示理想用户网络中的一个对象或该用户网络中的一个对象,系统会推断此新动词对应于一个已知目标。通过与用户达成共识以自然语言学习新单词作为解释,该系统在每次实验中都与新用户一起改进了其表示方案,并且还利用了先前与用户进行的讨论。通过这种学习而获得的用户对象的语义网并非总是最佳的,因为可以概括成对的用户对象之间的某些关系,而根据表征它们的作用力的值来抑制其他关系。实际上,为了简化所获得的网络,我们建议对从Gallois格获得的网络进行归纳贝叶斯分析。该分析的目标可以看作是对获得的描述图进行滤波的操作。

著录项

  • 作者

    Omri, Mohamed Nazih;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号